Biomechanical analysis of smart walking shoe sending movement information to display device by radio communication

نویسندگان

  • Seung-Bum Park
  • Kyung-Deuk Lee
  • Dae-Woong Kim
  • Jung-Hyeon Yoo
  • Kyung-Hun Kim
چکیده

The purpose of this study was to find the difference in foot pressure patterns when wearing smart walking shoes. Foot pressure measurement is an established tool for the evaluation of foot function [1]. These measurements assess the effect of structural changes, which may occur as a complication of pathologies such as diabetes, and therefore have been suggested as one of the key tools in ulcer risk estimation [2]. The subjects who took part in the test consist of 5 elderly people and 5 young people. The physical features of the elderly people that were recruited for the study are shown below: 5 healthy male subjects (elderly people) with an average age of 62.0 yrs (S.D 1.0 yrs), weight of 69.4 kg (S.D 10.0 kg), height of 168.8 cm (S.D 5.3 cm) and a foot size of 270.0 mm (S.D 0.0 mm). 5 healthy male subjects (young people) with an average age of 27.2 yrs (S.D 4.1 yrs), weight of 75.2 kg (S.D 4.6 kg), height of 175.4 cm (S.D 4.0 cm) and a foot size of 270.0 mm (S.D 0.0 mm). Ten males (5 elderly people, 5 young people) walked on a treadmill wearing three different shoes. Foot pressure data (Contact areas, Maximum forece, Peak pressure, Maximum mean pressure) was collected using a Pedar-X mobile system (Novel Gmbh., Germany) operating at the 1,000 Hz. The results are as follows: 1. Young people In comparison with the Type B (control shoes): 1) Type A (development shoes) a)The contact area of foot (Total) by increased 8.36%, forefoot (M1) by increased 8.95%, midfoot (M2) by increased 12.18% and rearfoot (M3) by increased 4.48%. b)The maximum force of foot (Total) by decreased 4.02%, rearfoot (M3) by decreased 6.39%, while the maximum force of forefoot (M1) by increased 2.48% and midfoot (M2) by increased 17.52%. c)The peak pressure of foot (Total) by increased 2.28%, forefoot (M1) by increased 6.19%, while the peak pressure of midfoot (M2) by decreased 2.91% and rearfoot (M3) by decreased 13.69%. d)The maximum mean pressure of foot (Total) by decreased 12.74%, forefoot (M1) by decreased 6.90%, midfoot (M2) by decreased 2.79% and rearfoot (M3) by decreased 11.18%. 2) Type C (smart walking shoes) a)The contact area of foot (Total) by increased 7.96%, forefoot (M1) by increased 8.90%, midfoot (M2) by increased 11.81% and rearfoot (M3) by increased 3.50%. b)The maximum force of foot (Total) by decreased 5.27%, forefoot (M1) by decreased 0.67% and rearfoot (M3) by decreased 5.67%, while the maximum force of midfoot (M2) by increased 23.55%. c)The peak pressure of foot (Total) by decreased 6.70%, forefoot (M1) by decreased 3.35% and rearfoot (M3) by decreased 10.54%, while the peak pressure of midfoot (M2) by increased 2.19%. d)The maximum mean pressure of foot (Total) by decreased 10.97%, forefoot (M1) by decreased 7.62%, midfoot (M2) by decreased 1.15% and rearfoot (M3) by decreased 8.02%. 2. Elderly people In comparison with the Type B (control shoes): 1) Type A (development shoes) a)The contact area of foot (Total) by increased 8.09%, forefoot (M1) by increased 5.47%, midfoot (M2) by increased 22.66% and rearfoot (M3) by increased 3.21%. b)The maximum force of foot (Total) by decreased 2.13%, forefoot (M1) by decreased 3.53% and rearfoot (M3) by decreased 9.85%, while the maximum force of midfoot (M2) by increased 41.32%. c)The peak pressure * Correspondence: [email protected] Footwear Biomechanics Team, Footwear Industrial Promotion Center, Busan, Korea Park et al. Journal of Foot and Ankle Research 2014, 7(Suppl 1):A121 http://www.jfootankleres.com/content/7/S1/A121 JOURNAL OF FOOT AND ANKLE RESEARCH

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of a Smart Sensing Shoe for Gait Phase Detection in Level Walking

Gait analysis and more specifically ambulatory monitoring of temporal and spatial gait parameters may open relevant fields of applications in activity tracking, sports and also in the assessment and treatment of specific diseases. Wearable technology can boost this scenario by spreading the adoption of monitoring systems to a wide set of healthy users or patients. In this context, we assessed a...

متن کامل

A Mobile and Fog-based Computing Method to Execute Smart Device Applications in a Secure Environment

With the rapid growth of smart device and Internet of things applications, the volume of communication and data in networks have increased. Due to the network lag and massive demands, centralized and traditional cloud computing architecture are not accountable to the high users' demands and not proper for execution of delay-sensitive and real time applications. To resolve these challenges, we p...

متن کامل

آیا می‌توان از کفش ناپایدار به عنوان کفش تمرینی ایمن در تمرینات بازتوانی و توانبخشی استفاده نمود؟

Objective: Unstable shoes have been recommended to osteoarthritis patients in order to reduce walking injuries. The aim of this study was to test the effect of unstable shoe on biomechanical selected variables related to injury during stanse phase of running. Materials & Methods: Twenty five healthy young male students available men (21±2.27years) participated in this study. Subjects were as...

متن کامل

A tele-monitoring system for gait rehabilitation with an inertial measurement unit and a shoe-type ground reaction force sensor

In this paper, a tele-monitoring system is proposed, using an inertial measurement unit (IMU) and a shoe-type ground reaction force (GRF) sensor called a Smart Shoe to measure a patient's walking data, and transmitting the measured data via the Internet. In our previous work, a mobile gait-monitoring system was developed, which provided visual feedback based on GRFs measured by a Smart Shoe (us...

متن کامل

The effect of unstable Shoe on shoe sole pressure during walking among healthy male students.

Objective: The aim of this study was to evaluate the effect of unstable shoes on the sole of the shoes pressure of walking in healthy male students with different geometric shapes. Today, various shoes have been developed to reduce the effects of injury parameters and improve performance parameters for walking.  Methods: 20 of the healthy male lambs were selected 178.96 ± 3.92 cm, 27 ± 3 years...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014